martes, 14 de abril de 2015

A continuación daremos una breve explicación sobre la historia y evolución de la computadora, generaciones de computadoras, algunos personajes importante en el desarrollo de la historia de las computadoras, lenguajes de las computadoras y tipos de sistemas de la información.



1- breve explicación sobre la historia de las computadoras.
2- cuadro sinoptico explicando las generaciones de los computadores.
3- tipos de sistemas numéricos en las computadoras.
Los sistemas de numeración que utiliza la computadora son: El Sistema Binario, el Decimal, el Octal y el Hexadecimal.

SISTEMA BINARIO
 Es un sistema de numeración que utiliza internamente hardware de las computadoras actuales. Se basa en la representación de cantidades utilizando los dígitos 1 y 0, por tanto su base es dos. Cada digito de un número representado en este sistema se representa en BIT (contracción de binary digit).
 Los ordenadores trabajan internamente con dos niveles de voltaje, por lo que su sistema de numeración natural es el sistema binario (encendido '1', apagado '0').
 SISTEMA OCTAL
 Es un sistema de numeración cuya base es 8 , es decir, utiliza 8 símbolos para la representación de cantidades . Estos sistemas es de los llamados posiciónales y la posición de sus cifras se mide con la relación a la coma decimal que en caso de no aparecer se supone implícitamente a la derecha del número. Estos símbolos son:
0 1 2 3 4 5 6 7
Los números octales pueden construirse a partir de números binarios agrupando cada tres dígitos consecutivos de estos últimos (de derecha a izquierda) y obteniendo su valor decimal.
Por ejemplo, el número binario para 74 (en decimal) es 1001010 (en binario), lo agruparíamos como 1 001 010. De modo que el número decimal 74 en octal es 112.
 En informática, a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos.
 Es posible que la numeración octal se usara en el pasado en lugar de la decimal, por ejemplo, para contar los espacios interdigitales o los dedos distintos de los pulgares. Esto explicaría por qué en latín nueve (novem) se parece tanto a nuevo (novus). Podría tener el significado de número nuevo.
SISTEMA DECIMAL
 Es uno de los sistema denominado posiciónales, utilizando un conjunto de símbolos cuyo significado depende fundamentalmente de su posición relativa al símbolo, denominado coma (,) decimal que en caso de ausencia se supone colocada a la derecha. Utiliza como base el 10, que corresponde al número del símbolo que comprende para la representación de cantidades; estos símbolos son:
0 1 2 3 4 5 6 7 8 9
Este conjunto de símbolos se denomina números árabes. Es el sistema de numeración usado habitualmente en todo el mundo (excepto ciertas culturas) y en todas las áreas que requieren de un sistema de numeración. Sin embargo contextos, como por ejemplo en la informática, donde se utilizan sistemas de numeración de propósito más específico como el binario o el hexadecimal.
 El sistema decimal es un sistema de numeración posicional, por lo que el valor del dígito depende de su posición dentro del número. Ejemplo:
 SISTEMA HEXADECIMAL
 Es un sistema posicional de numeración en el que su base es 16, por tanto, utilizara 16 símbolos para la representación de cantidades. Estos símbolos son:
0 1 2 3 4 5 6 7 8 9 A B C D E F
4- Tipos de sistemas de información
Debido a que el principal uso que se da a los SI es el de optimizar el desarrollo de las actividades de una organización con el fin de ser más productivos y obtener ventajas competitivas, en primer término, se puede clasificar a los sistemas de información en:
Sistemas Competitivos
Sistemas Cooperativos
Sistemas que modifican el estilo de operación del negocio
Esta clasificación es muy genérica, y en la práctica no obedece a una diferenciación real de sistemas de información reales, ya que en la práctica podríamos encontrar alguno que cumpla varias (dos o las tres) de las características anteriores. En los subapartados siguientes se hacen unas clasificaciones más concretas (y reales) de sistemas de información.
Desde un punto de vista empresarial
Modelo de la pirámide
La primera clasificación se basa en la jerarquía de una organización y se llamó el modelo de la pirámide.3 Según la función a la que vayan destinados o el tipo de usuario final del mismo,4 los SI pueden clasificarse en:
Sistema de procesamiento de transacciones (TPS).- Gestiona la información referente a las transacciones producidas en una empresa u organización, también se le conoce como Sistema de Información operativa.
Sistemas de información gerencial (MIS).- Orientados a solucionar problemas empresariales en general.
Sistemas de soporte a decisiones (DSS).- Herramienta para realizar el análisis de las diferentes variables de negocio con la finalidad de apoyar el proceso de toma de decisiones.
Sistemas de información ejecutiva (EIS).- Herramienta orientada a usuarios de nivel gerencial, que permite monitorizar el estado de las variables de un área o unidad de la empresa a partir de información interna y externa a la misma. Es en este nivel cuando los sistemas de información manejan información estratégica para las empresas.
Evolución de los sistemas de información a lo largo del tiempo.
Estos sistemas de información no surgieron simultáneamente en el mercado; los primeros en aparecer fueron los TPS, en la década de los 60, sin embargo, con el tiempo, otros sistemas de información comenzaron a evolucionar. Los primeros proporcionan información a los siguientes a medida que aumenta la escala organizacional
Sistemas de automatización de oficinas (OAS).- Aplicaciones destinadas a ayudar al trabajo diario del administrativo de una empresa u organización.
Sistema Planificación de Recursos (ERP).- j{viene de las primeras letras: Enterprise Resource Planning: cuyo objetivo es la planificación de los recursos de una organización. Típicamente esto se lo ha utilizado en empresas productivas que han seguido metodologías de planificación MRPII. El objetivo es tener claramente identificado como llegar a los productos finales desde la materia prima; es decir desde un inventario de materia prima e insumos poder determinar la cantidad que llegaremos a generar de productos finales para ponerlos a disposición del mercado}. Integran la información y los procesos de una organización en un solo sistema.
Sistema experto (SE).- Emulan el comportamiento de un experto en un dominio concreto.
Los últimos fueron los SE, que alcanzaron su auge en los 90 (aunque estos últimos tuvieron una tímida aparición en los 70 que no cuajó, ya que la tecnología no estaba suficientemente desarrollada).
Sistemas de información estratégicos
Puede ser considerado como el uso de la tecnología de la información para respaldar o dar forma a la estrategia competitiva de la organización, a su plan para incrementar o mantener la ventaja competitiva o bien para reducir la ventaja de sus competidores.
Su función primordial es crear una diferencia con respecto a los competidores de la organización (o salvar dicha diferencia) que hagan más atractiva a ésta para los potenciales clientes. Por ejemplo, en la banca, hace años que se implantaron los cajeros automáticos, pero en su día, las entidades que primero ofrecieron este servicio disponían de una ventaja con respecto a sus competidores, y hoy día cualquier entidad que pretenda ofrecer servicios bancarios necesita contar con cajeros automáticos si no quiere partir con una desventaja con respecto al resto de entidades de este sector. En este sentido, los cajeros automáticos se pueden considerar sistemas de información estratégicos.
Su función es lograr ventajas que los competidores no posean, tales como ventajas en costos y servicios diferenciados con clientes y proveedores. Apoyan el proceso de innovación de productos dentro de la empresa. Suelen desarrollarse dentro de la organización, por lo tanto no pueden adaptarse fácilmente a paquetes disponibles en el mercado. Entre las características más destacables de estos sistemas se pueden señalar:
Cambian significativamente el desempeño de un negocio al medirse por uno o más indicadores clave, entre ellos, la magnitud del impacto.
Contribuyen al logro de una meta estratégica.
Generan cambios fundamentales en la forma de dirigir una compañía, la forma en que compite o en la que interactúa con clientes y proveedores.
Otra clasificación, según el entorno de aplicación
Entorno transaccional: Una transacción es un suceso o evento que crea/modifica los datos. El procesamiento de transacciones consiste en captar, manipular y almacenar los datos, y también, en la preparación de documentos; en el entorno transaccional, por tanto, lo importante es qué datos se modifican y cómo, una vez que ha terminado la transacción. Los TPS son los SI típicos que se pueden encontrar en este entorno.
Entorno decisional: Este es el entorno en el que tiene lugar la toma de decisiones; en una empresa, las decisiones se toman a todos los niveles y en todas las áreas (otra cosa es si esas decisiones sonestructuradas o no), por lo que todos los SI de la organización deben estar preparados para asistir en esta tarea, aunque típicamente, son los DSS los que se encargan de esta función. Si el único SI de una compañía preparado para ayudar a la toma de decisiones es el DSS, éste debe estar adaptado a todos los niveles jerárquicos de la empresa.
Sistemas de información de espionaje
Artículos principales: PRISM y Echelon.
Si bien la mayor parte de sistemas de información operan con el conocimiento de los agentes sobre los que se recaba información (sistemas públicamente conocidos), el auge de las comunicaciones electrónicas ha hecho que proliferen sistemas secretos de espionaje como por ejemplo el programa PRISM por el cual la Agencia de Seguridad Nacional (NSA) instituida por el gobierno estadounidense ha operado desde 2007, espiando a líderes y presidentes de otros países (aliados y adversarios de Estados Unidos), y se ha afirmado que tiene capacidad para interceptar decenas de miles de comunicaciones telefónicas por minuto. Gran parte de lo que se conoce sobre dicho sistema de información se conoció a partir del escándalo por las filtraciones de Edward Snowden (2013).
Previamente, el parlamento europeo había abierto comisiones de investigación sobre sistemas de intercepción de comunicaciones electrónicas, conocido actualmente como Echelon, operada conjuntamente porEstados Unidos, Canadá, Reino Unido, Australia y Nueva Zelanda.
Aplicación de los sistemas de información
Los sistemas de información tratan el desarrollo, uso y administración de la infraestructura de la tecnología de la información en una organización.
En la era post-industrial, la era de la información, el enfoque de las compañías ha cambiado de la orientación hacia el producto a la orientación hacia el conocimiento, en este sentido el mercado compite hoy en día en términos del proceso y la innovación, en lugar del producto. El énfasis ha cambiado de la calidad y cantidad de producción hacia el proceso de producción en sí mismo, y los servicios que acompañan este proceso.
El mayor de los activos de una compañía hoy en día es su información, representada en su personal, experiencia, conocimiento, innovaciones (patentes, derechos de autor, secreto comercial). Para poder competir, las organizaciones deben poseer una fuerte infraestructura de información, en cuyo corazón se sitúa la infraestructura de la tecnología de información. De tal manera que el sistema de información se centre en estudiar las formas para mejorar el uso de la tecnología que soporta el flujo de información dentro de la organización. Un sistema de información debe brindar la totalidad de los elementos que conforman los datos, en una estructura robusta, flexible ante los futuros cambios y homogénea.



John von Neumann (Budapest, Imperio austrohúngaro, 28 de diciembre de 1903-Washington, D.C., Estados Unidos, 8 de febrero de 1957) fue un matemático húngaro-estadounidense que realizó contribuciones fundamentales en física cuántica, análisis funcional, teoría de conjuntos, teoría de juegos, ciencias de la computación, economía, análisis numérico, cibernética, hidrodinámica, estadística y muchos otros campos.1 Es considerado como uno de los más importantes matemáticos de la historia moderna.
Ciencia computacional:
Identificación de von Neumann en el Laboratorio Nacional Los Álamos
Una primera implementación de la autorreproducción del constructor universal de Von Neumann. Tres generaciones de máquina se muestran, el segundo casi ha terminado la construcción de la 3ª. Las líneas que corren a la derecha son las cintas de las instrucciones genéticas, que se copian junto con el cuerpo de las máquinas. La máquina funcionando se muestra en una versión de estado 32 del ambiente autómata celular de von Neumann.
Von Neumann le dio su nombre a la arquitectura de von Neumann, utilizada en casi todos los computadores, por su publicación del concepto; aunque muchos piensan que este nombramiento ignora la contribución de J. Presper Eckert y John William Mauchly, quienes contribuyeron al concepto durante su trabajo en ENIAC.16 Virtualmente, cada computador personal, microcomputador, minicomputador y supercomputador es una máquina de von Neumann. También creó el campo de los autómatas celulares sin computadores, construyendo los primeros ejemplos de autómatas autorreplicables con lápiz y papel. El concepto de constructor universal fue presentado en su trabajo póstumo Teoría de los autómatas autorreproductivos. El término «máquina de von Neumann» se refiere alternativamente a las máquinas autorreplicativas. Von Neumann probó que el camino más efectivo para las operaciones mineras a gran escala, como minar una luna entera o un cinturón de asteroides, es a través del uso de máquinas autorreplicativas, para aprovechar el crecimiento exponencial de tales mecanismos.
Además de su trabajo en arquitectura computacional, von Neumann ofreció una contribución al estudio de algoritmos. Donald Knuth considera a von Neumann el inventor, en 1945, del conocido algoritmo merge sort, en el cual la primera y segunda mitad de un array (vector) se clasifican recursivamente por separado y luego se fusionan juntas.
También participó en la investigación de problemas en el campo de la hidrodinámica numérica. Junto con R. D. Richtmyer desarrolló un algoritmo para definir la viscosidad artificial, que probó la esencia para el entendimiento de las ondas de choque. Puede decirse que no sería posible entender mucho de astronáutica y ni siquiera podrían haberse desarrollado los jets y los motores espaciales sin ese trabajo. El problema era que cuando los computadores resuelven problemas hidro o aerodinámicos, buscan poner muchos puntos de rejilla (o malla, en inglés grid) computacionales en regiones con onda de choque de discontinuidad aguda. La viscosidad artificial era un truco matemático para suavizar levemente la transición del choque sin sacrificar la física básica.
Blaise Pascal.
Fue un matemático, físico, filósofo cristiano y escritor francés. Sus contribuciones a las matemáticas y las ciencias naturales incluyen el diseño y construcción de calculadoras mecánicas, aportes a la teoría de la probabilidad, investigaciones sobre los fluidos y la aclaración de conceptos tales como la presión y el vacío. Después de una experiencia religiosa profunda en 1654, Pascal abandonó las matemáticas y la física para dedicarse a la filosofía y a la teología.
Pascal Fue el primero en diseñar y construir una máquina sumadora. Quería ayudar a su padre, quien era cobrador de impuestos, con los cálculos aritméticos. La máquina era mecánica y tenía un sistema de engranes cada uno con 10 dientes; en cada diente había grabado un dígito entre el 0 y el 9. Así para representar un número, el engrane del extremo derecho se movía hasta tener el dígito de las unidades, el engrane que le seguía a la izquierda tenía el dígito de las decenas, el siguiente el de las centenas y así sucesivamente. Los números se representaban en la máquina como nosotros lo hacemos en notación decimal.
Herman Hollerith.
Está considerado como el primer informático, es decir, el primero que logra el tratamiento automático de la información (Informática = Información + automática). También está dentro de los creadores de la primera computadora en el mundo.
En 1896, Hollerith fundó la empresa Tabulating Machine Company, con el fin de explotar comercialmente su invento. En 1911, dicha compañía se fusionó con Computing Scale Company, International Time Recording Company y Bundy Manufacturing Company, para crear la Computing Tabulating Recording Corporation (CTR). El 14 de febrero de 1924, CTR cambió su nombre por el de International Business Machines Corporation (IBM), cuyo primer presidente fue Thomas John Watson, que curiosamente no estaba muy convencido del futuro que podían tener estas máquinas.

Integrantes del grupo:
Camilo Andres Perez Algarin
Sebastian de Jesus Barreto Florez
Jorge Enrique Fontalvo Ramos

No hay comentarios:

Publicar un comentario